A model for energetic ion generation in an anode plasma
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Mechanisms for energetic ion generation that could explain the observed ion energies in the
anode plasma of a magnetically insulated ion diode [Phys. Rev. A 39, 5842 (1989)], are
discussed. It is suggested that strong electric fields that result from large density gradients on few
tens of micrometers near the anode cause the ion acceleration. Steady state as well as

time-dependent accelerations are examined.

I. INTRODUCTION

The ion temperature of a magnetically insulated diode
(MID) plasma has a major effect on the device perfor-
mance, particularly regarding beam divergence. Anode
plasmas with ion temperature of about 20 eV have been
observed in the MID experiments at the Weizmann
Institute.'* This ion temperature is roughly uniform over
the plasma, implying that the ions do not acquire their
energies in the bulk plasma. In this paper we explore the
possibility that ions in MID plasmas are heated in a nar-
row layer (thickness smaller than 50 pm) near the anode
surface, much narrower than the 1 mm plasma width. It
has long been known that the free expansion of a plasma
can result in the generation of energetic ions. Ion acceler-
ation due to plasma expansion is known to occur, for ex-
ample, in vacuum arcs*® and in laser-produced
plasmas.9'14 We suggest that a narrow dense plasma lo-
cated near the anode of the MID and having high electron
temperature expands within this narrow region, resulting
in energy transfer from electrons to ions. The plasma flow-
ing out of this region thus contains energetic ions as ob-
served in experiments. We examine this mechanism for
both steady-state and time-dependent expansions, and in
both planar and spherical geometries.

The dense plasma in our model arises from the rapid
ionization of desorbed neutrals. Initially there is a high-
density cloud of neutral atoms, having spatial extent of
only few tens of micrometers, much smaller than the
plasma width of 1 mm. Such neutral clouds are believed to
appear on the anode surface in MID’s. We assume that by
some mechanism the electrons near the anode surface have
a higher temperature ( ~30-50 ¢V than in the bulk of the
plasma, even though so far there is no experimental sup-
port to this assumption. After electron impact ionization of
the neutrals, the resulting plasma expands. The plasma is
immersed in a strong magnetic field. However, both ions
and electrons are considered unmagnetized; the ions be-
cause their Larmor radius is larger than the thickness of
the neutral layer, and the electrons because they are colli-
sional. The plasma expansion is therefore ambipolar. The
electrons have much higher thermal velocity than the ions,
and therefore leave the neutral cloud much faster. As a
result of the rapid electron flow from the neutral cloud, a
charge imbalance, and therefore an electric field, is pro-
duced. The resulting potential hump continues to grow
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until the electron and ion fluxes are balanced. Ions then
gain energy as they fall down the potential hill, while elec-
trons lose energy as they climb out of a potential well.
Thus, through this energy exchange, ion acceleration and
electron cooling take place. We suggest that this is the
mechanism by which ions acquire their kinetic energy.

The flow of neutrals, the plasma production through
ionization, the plasma expansion, and the ion acceleration,
all these processes occur simultaneously. In some cases
certain processes are dominant and the picture is simpler.
For simplicity we examine two such cases. In one case a
steady state is established, in which the plasma production
in the layer is balanced by the flow of plasma from the
layer. On a time longer than the transit time, the change in
density of the neutrals also changes the steady state. The
first case we describe is therefore plasma expansion with
ionization in a steady state. The second case we study is a
time-dependent expansion. Such an expansion occurs when
the supply of neutrals from the anode ceases. If the ioniza-
tion rate is faster than the rate of plasma expansion, full
ionization takes place, followed by a time-dependent ex-
pansion of the fully ionized dense plasma. The second case
we describe is therefore a time-dependent plasma expan-
sion without accompanying ionization. As we shall show
the essential features of the energy transfer from electrons
to ions are basically the same for the steady-state and time-
dependent expansions.

In addition to the spatial extent and the neutral den-
sity, the geometry of the neutral cloud will affect the nature
of ion heating. In this paper we consider neutral clouds
having either planar or spherical symmetry in space. For a
slab of neutrals having no density dependence in the y and
z directions, all ion motion is in the x direction, perpendic-
ular to the anode. However, MID measurements indicate
that the ion velocity distribution is isotropic. A spherically
symmetric ball of neutrals will result in ion motion in every
direction. We therefore consider the ion velocity distribu-
tion which results from many “half-balls” on the anode
surface. Here the anode at x=0 divides each ball in half.
We are then interested in the ion flow due to all neutrals
having x>0. Such a distribution of neutrals results in a
more isotropic ion velocity distribution than that of a neu-
tral slab. The magnitude of the energy transfer from elec-
trons to ions, however, is not strongly affected by geome-
try.

In Sec. Il we describe the experimental data. In Sec.
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FIG. 1. The blue shift of the Cur 2297 A line measured at 53° with the
normal to the anode (N) and the shift measured parallel to the anode
(P). Each point on the N and P curves is an average of 13 and 12
discharges, respectively.

ITI we introduce the model used in this paper, independent
of geometry. Ions are cold and collisionless, while electrons
are collisional and are taken to obey the adiabatic relation
P, nl, where P, and n, are the electron pressure and den-
sity, respectively. The electron mass is ignored, and
quasineutrality is assumed for the proton electron plasma.

In Sec. IV we solve for the steady-state and time-
dependent expansions in planar geometry. The steady-state
solution is determined by the parameter «, which is the
product of the ionization frequency and the ion transit
time. In planar geometry, the condition a <0.404 is re-
quired for a steady-state flow. For the steady-state flow we
found that the initially cold ions can gain energy up to 0.77
of the maximal electron temperature in the layer. For time-
dependent expansion, a final jon energy of two to three
times the final electron energy results from plasma volume
expansion by a factor of 5-8.

In Sec. V we solve for the steady-state and time-
dependent expansions in spherical geometry. For spherical
geometry we found that the upper limit on o for steady-
state flow is about a=1.76, roughly a factor of 4 larger
than for planar geometry. In steady state the ions can gain
energy up to about 0.7 of the maximal electron tempera-
ture in the layer. For time-dependent expansion, a final ion
energy of two to three times the final electron energy re-
sults from plasma volume expansion by a factor of 5-8, the
same as for planar geometry. In Sec. VI conclusions are
presented.

Il. THE EXPERIMENTAL RESULTS

As a part of a spectroscopic research of the anode
plasma at the MID of the Weizmann Institute, we per-
formed a detailed study of the ion wvelocities. Figure 1
(taken from Ref. 1) shows the blue shift of the C 2297 A
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FIG. 2. Position averaged CIll temperatures obtained using the 2297 A
line for the y direction (4) and the z direction (B).

line measured at 53° with the normal to the anode (N) and
the shift measured parallel to the anode (P). The shift (V)
corresponds to velocity that decreases from 1 em/psec
(=15 eV) at time 50 nsec to 0.5 cm/usec at 100 nsec,
while the shift P corresponds to velocities less than 0.1
cm/usec. This measurement shows clearly that the ions
have a flow velocity in a direction perpendicular to the
anode. Figure 2 shows the position averaged Cili temper-
atures obtained using the same line as in Fig. 1 for the z
direction ( B) (parallel to the magnetic field) and for the y
direction (4) (normal to the magnetic field and parallel to
the anode surface). Both temperatures are approximately
the same (10-20 V). This thermal energy is similar to the
kinetic energy associated with the directed motion normal
to the anode surface that is shown in Fig. 1.

In addition to the analysis of line shapes of spontane-
ous emission, we employed techniques of laser absorption
which enabled us to measure ion temperatures as close as
30 pm to the anode surface. Figure 3 (taken from Ref. 3)
shows the profile of a Mgl absorption line obtained within
30 um from the anode and the profile of a Mgl spontane-
ous emission line obtained within 100 pm to the anode
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FIG. 3. Absorption and emission Doppler broadened profiles for an Mgir
transition. The wavelength AL is with respect to the line center. The
profiles of the absorption line (35,3 3P,,;) and that of the spontaneous
emission {3P;;;—3S,,) are obtained within =30 pm and =100 um,
respectively, from the anode surface. The two profiles were measured
simultaneously for t=>53 nsec. The uncertainty in each data point for the
emission profile is # 15% (not shown in the figure).
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surface. Both profiles show a similar temperature of =15
eV. This was the same temperature that we observed at
larger distances from the anode surface.

The measurements described above show an ion flow
velocity of 10-20 eV in a direction perpendicular to the
anode surface. The ions have a temperature parallel to the
anode surface (both parallel and perpendicular to the mag-
netic field) of 10-20 eV as well. This velocity and temper-
ature seem to be acquired by the ions very close to the
anode surface, within 30 um. Our goal in the present paper
is to suggest mechanisms that could generate such ion flow
velocity and temperature at such a short distance from the
anode.

ill. THE MODEL

We assume that a plasma is generated in a small re-
gion, few tens of micrometers wide, near the anode. The
density there is larger than the density of the background
plasma (which is $2x 10" cm™3). The plasma within the
region of the increased density flows into the background
plasma. This motion is characterized as follows: (1) the
time of flight (few nsec) is much shorter than the ion
cyclotron period which is, for the 7 kG magnetic field,
equal or larger than 100 nsec and much shorter than the
ion collision time (which is larger than 10 nsec). The ions
are therefore collisionless and unmagnetized. Also, the ion
kinetic energy is associated only with its directed velocity.
We therefore describe the ion dynamics by the momentum
equation of a cold fluid

M(2+V°V)v=—ev¢. (1)
at

Here ¢ and M are the ion charge and mass, v is the ion
velocity, and ¢ is the electrostatic potential. (2) The elec-
trons are assumed to be in thermal equilibrium so that we
can neglect their inertia. This is equivalent to the assump-
tion that the electron thermal velocity is much larger than
its directed velocity. Therefore

veX Boé,\ VP,
—) - —mvVenVe

0=——e(—V¢+ c en
—mv,(V,—V). (2)

Here n,, v,, P,, and m are the electron density, directed
velocity, pressure, and mass. The electrons are assumed
collisional or magnetized enough so that their pressure is
isotropic. We also allow electron collisions with stationary
neutrals of frequency v,y and collisions with jons of fre-
quency v,;. We assume further that all quantities depend
on x only. We add Egs. (1) and (2), and obtain

a 3 19P, m .
(E'{'Uxax)vx"‘_p_a?_ﬁve’ (3)
where
VeEVeN'*'wg/(VeN'i‘Vei)’ (4)

3401 Phys. Fluids B, Vol. 5, No. 9, September 1993

also p=Mn and w.=eBy/mc. The second term on the
right-hand side of (3) is small relative to the first term
provided

Ui L

—>—V,. (5)

Uex Uh ¢
Here L is the width of the layer and vy, is the electron
thermal velocity. If the electrons are magnetized
®.>V,y,Ve, the collision frequency is Vo= 02/ (Voy+Ver)
and inequality (5) becomes

é (Ven+Vei)

12 o > 1. (6)

In the anode plasma the electron collision frequency was
found to be one-fourth of the electron cyclotron frequency,
and about ten times larger than Spitzer’s collision
frequency.”!® In the plasma near the anode ;X7 um,
L<50 um, (voy+v,) R0 /4=2X 10'% sec™!, and v, is a
few cm/usec. The left-hand side of (6) is larger than 1,
and, therefore, inequality (5) seems to be satisfied to a
good approximation even for the magnetized case. If v,; is
larger than v,y and ., v, is even smaller and inequality
(5) is clearly satisfied. In most of this paper we therefore
neglect the last term in Eq. (3). We will, however, also
address the case that collisions with neutrals are dominant
and v,=vy which is large enough so that (5) is not valid.
For such a case vy has to be larger than 10'! sec™" and the
neutral density larger than 2X 10'® cm™3. We require,
however, that either v,/v or r; be smaller than L, so that
we can still assume that the electron pressure is isotropic.

The electron pressure is assumed to satisfy a polytropic
equation of state

Pe=ApY9 (7)

where y is the ratio of specific heats. Since the plasma
density is high we require quasineutrality n,=n. For our
~10 eV electron temperature plasma of n,52X 101
cm ™3, the Debye length is smaller than 0.5 pum. We there-
fore require that L»0.5 um.

We complement Egs. (3) and (7) by the continuity
equation

dp
3tV py=s(r), (8)
where s is a source and sink function of ionization, recom-
bination, and so on.

For both slab and spherical geometries, we will now
find the plasma evolution for the following cases:

(1) The plasma is constantly supplied with ioniza-
tions. We calculate the steady state s(r)=£0, 3/9t=0.

(2) The plasma is generated in a time much shorter
than the expansion time. We solve for the time dependence
of the plasma where s(r) =0, d/9t0.

IV. SOLUTIONS IN SLAB GEOMETRY

We assume that a high-density layer of neutrals exists
near the anode. The plasma is therefore produced in a
localized area near the anode. In our model we take the
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neutral cloud to be symmetric about x=0, (the anode sur-
face). A plasma density hump, accompanied by a potential
hump, therefore forms, symmetric about x=0. The ions
are accelerated as they slide down the potential hill, while
the elecirons lose some of their thermal energy. The real
neutral cloud corresponds to the half-cloud which occupies
x>0. We therefore consider the flow of ions which are
generated in this half of the cloud, all of which flow away
from the x=0 surface. We look for the time-independent
profiles of density, electric potential, electron temperature,
and ion velocity.

All the quantities depend on x only, the distance from
the wall. The ions are assumed collisionless. The ion den-
sity is

x dx’ g(x")
ni(x)= fo PG (%)

Here g(x’) is the rate of ion generation and w(x,x’) is the
velocity at x of an ion which was born at x’

Muw?
e¢(x)+T=e¢(x’). (10)

The ion generation rate is

g(x)=yn(x)ny(x). (11)

Here, n,(x) and ny(x) are the electron and neutral densi-
ties and y=o.,, where o, is the cross section for ioniza-
tion by electrons. We assume that

ny(x) =Nge™ %, (12)

The electrons satisfy Eq. (2) and have a polytropic equa-
tion of state (7). We assume that inequality (5) holds, and

thus
14 (y- i ) ed
v } To
where ng and T are the electron density and temperature
at x=0, where ¢(x=0)=0. In writing Eq. (13) we as-

sume that ¥> 1, and exclude the isothermal case (y=1).
We restrict ourselves to the quasineutral case, and thus

i —
a Y

§ g e {1+ [(y=D)/y¥ P/ D
(\Pr__\l;)l 2 *

I/(y-1)

n(x)=ng , (13)

1/(y—1)

= (14)

0
where Y=ed/T,, E=x/A, and V' =W (£'). Also, we de-
fine here a=v/v,, where v;=yN, is the ionization fre-
quency at x=0, and v, = (2To/M,)"*/A is a typical in-
verse transit time for an ion moving across the neutral
layer. This is a version of the well-known plasma
equation'!? in the quasineutral approximation.

Before finding solutions to Eq. (14), we consider
whether energy is conserved by the system it describes.
Ions have initially zero kinetic energy, so the normalized
ion energy flux at £ is
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¢ ’ 1 Viy—1)
e fo g’ et (HYT \y(gf))

X[W(E")—¥(8)]. (13)

It can be shown that the electron equation of state [Eq.
(7)] implies that electrons generated by ionization have an
initial average kinetic energy of [y/(y—1)]7. Therefore,
the electron energy flux is

g s ___‘1 1/¢y—1)
rf= f dg’ e ¢ (1+%—— \y(g'))
[

¥ r—1

L (145w ). (16)
{That the initial electron energy {[y/(y—1)]T} is larger
than the thermal energy {[1/(y—1)]T}, is not surprising.
The reason that ion heating occurs is that these more en-
ergetic electrons give up some of their energy to the ions
before becoming thermalized.) We now compare these
fluxes to the energy generation rate (S%) between 0 and &:

& , —1 1/(y—1}
SE= fo dg' ¢ (1+%— qz(g'))

4 r—1_ .
X'y—l(l+ ” \P(§)). (17)
The expression (DF+T%)—S% is identically zero, as is
necessary for energy conservation.

Asis well known, Eq. (14) can be solved for £(¥). We
multiply both sides of the equation by (¥ —W,)~? and
integrate on V¥ from zero to ¥,, after we make W rather
than £ the independent variable in the integral on the right-
hand side. The result of the integration is

dt' r—1

1 e ¢ 1/(y-1)
EG(W):'H’fO dv 7 ¢ [l-i-(—y*)‘i’

(18)

where we wrote ¥ instead of ¥, and

" 4’ ,},__1 1/(y~1})

(19)

Let us choose y=5/3. Then
G(¥) = =31 +59) (—W) 232 (1 +3w)?

X [Inf 1+ (—3¥)"?| —1n| (1+39) 2] ).
(20)

In order to simplify the analysis let us approximate the
electron density in the expression for g(x) [Eq. (11)] as a
constant

1, (x) =ny. 21

The electron density changes less than the neutral density
and thus this seems a reasonable approximation. With this
approximation Eq. (18) is simplified to
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FIG. 4. (a) ¥ vs & (b) the normalized density n/ng vs &, (c) the normalized temperature T/ T vs §, and (d) the normalized ion energy E/ T vs

£, for various values of a.

éG(W):v(e‘g—l) £>0. (22)

From Eq. (22), Fig. 4 presents the potential W, the
normalized electron density {divided by the maximal den-
sity), the normalized electron temperature (divided by the
maximal temperature), and the normalized ion energy as
functions of £. The plots are given for several values of the
parameter a. For a < a*=0.404, the potential ¥ is contin-
uous for £— 0. Here ion heating occurs in a steady-state
manner, with up to 0.77T, of the electron energy being
transferred to ions.

For a> a*, ¥ becomes singular for finite £, and the
assumption of quasineutrality breaks down. We have
solved the full Poisson equation for this case, and have
found that this breakdown of quasineutrality corresponds
to the disappearance of steady-state flow. Physically, this
can be understood as follows: Increasing a corresponds to
increasing the ionization rate v;. For a steady-state solu-
tion, more rapid ionization necessitates larger ion flow,
therefore a larger drop in potential ¥. As ¥ decreases,
however, the electron density also decreases, thus restrict-
ing the ion flow. Therefore, increasing the drop in potential
¥ becomes less and less effective at increasing the ion flow.
Thus we find the critical value a =a*, above which the ion
flow cannot match the ion generation rate, regardless of the
size of the potential drop in ¥. For a > a*, therefore, a
steady-state flow is not possible. In reality the neutral den-
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sity (12) is not specified but affected by the process of
ionization itself. The neutral layer dimension will be ad-
justed so that a <a¥*.

We now solve for the time-dependent expansion in slab
geometry. We assume the plasma is generated on a time
much smaller than L/v where L and v are characteristic
length and velocity scales. The flow of neutrals ceases and
the plasma then expands until its density equals the density
of the background plasma. The reduction in temperature is
T/Ti=(p/p)?" '=(L/L)~ 7", Here if denote
initial and final, L is a characteristic dimension, and d=1,
2, or 3 is the dimensionality parameter. The isotropic ve-
locity distribution we measured suggests that y=5/3. If
the expansion is one dimensional d=1,

#)-(2)
Ti 1D Li '

If the electron temperature decreases to a fourth and the
rest of the energy becomes ion directed energy we obtain
final ion energy three times the electron energy. It is there-
fore required that the plasma dimension increase by a fac-
tor ~ 8 for such an energy transfer.

This estimate is consistent with the following explicit
self-similar solution. For a time-dependent expansion, we
take s(7) to be zero in Eq. (8). The governing equations
become

(23)
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o] a Ay d vl 0

(a—t—l—v-é-x-)v——-—-(y__l)-a—xp — VU (24)
and

P2 0 25

33z (P0) =0, (25)

where v is the fluid velocity. These two equations represent
the expansion of a polytropic gas. In our case the expan-
sion is into the background plasma, but for simplicity we
examine expansion into vacuum. We will look for a solu-
tion which is symmetric about the anode surface (x=0).
We then consider the ion flow and heating for x> 0. For
the initial density

;2\ V=D
p(x,t:O):pcokl—F) , (26)
0

there is a self-similar solution of Egs. (24) and (25). A
solution for the analogous problem in spherical geometry,
without the drag force, was given in Ref. 20. For conve-
nience we write the equations in nondimensional units. The
initial electron temperature at the center is
Po/no=ApM/po=Tq A=T 4pks?/M. We normalize
x by Xy, p by pes U by v,=(To/M)'%, t by Xo/v,, and v
by v/X,. Equations (24)—(26) become

d d y 4 -1
(az“ax)”" “=DaxP ™

dp 9
e (pv) =0, (27)
plx,t=0)=(1—x})Vr-1 (28)

for x<1. The solution of these equations, similarly to Ref.
20, is

%2 \ V=1

p(x,0) = pe() ( | ‘W) (29)
Also

P X (1) =1, (30)
where

p(0)=X(0)=1. (31)
The velocity is

v(rt) =X()x/X (1) (32)

for x<X(t). The equation of motion for the radius X is

2y

X=t—nx*—

vX. (33)
In the first phase of the expansion, the drag term is small
and the plasma is accelerated, When the two terms on the
right-hand side of the equation become comparable, the
plasma velocity reaches its maximum and starts to de-
crease. At these later times X is small and
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20— —

FIG. 5. X vs ¢, for v=0.1, 1, 10. The dotted curves show the approximate
results [(36) and (37)] for v=1.

CIUAUS (820

9 1/ y+1)
E(_____y(wl) ) . (34)

4
v(y—1)
The velocity X approaches zero asymptotically. At earlier

times we neglect collisions and the solution of (33) with-
out the second term on the right-hand side is

y—1 rx dx
f=27,1 ¢} f: (—x-772:
Figure 5 shows X as a function of ¢ for various values of v
for y=>5/3. For v=1, which corresponds to a neutral den-

sity of 10'® cm ™%, we plot also the approximate relations
(34) and (35) which become

(35)

40 3/8
X=(§;t) , oo (36)
and
X=1432, t-0. (37)

It seems that unless the neutral density is very large (10®
cm™?) we can neglect the collision term (vX) in (33). We
therefore examine the rate of energy transfer from elec-
trons to ions when collisions are neglected. The electron
thermal energy Ep=3[&dx P,(x,t) and the ion directed
energy Ey= [&dx ipv(x,1)? are

E(:)=§ L ldx(l—xz)m (38)
T (0O7 Jo

and

3 ! ! 2v5/2
E (t)y==x (1—~—m)f dx(1—x°)"4, (39)
2 X 0
where we used the relation (X)2=15(1—1/X*%), We ob-
tain
E/Er=X">_1. (40)
For ion energy two to three times the electron energy X has
to be a factor of 5-8. This is consistent with the conclusions

drawn from Eq. (23). Assume that at this value the aver-
age density in the slab is equal to the density of the plasma
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background. The average density of the slab is then ini-
tially five to eight times the background density.

For both steady-state and time-dependent expansions
we find ion heating in the range observed in experiments.
Thus, the slab model we presented can explain the higher
ion energies. It does not, however, explain the almost iso-
tropic ion distribution. In the next section we solve the
steady-state and time-dependent cases in spherical geome-
try in order to account for that isotropy.

V. SOLUTIONS IN SPHERICAL GEOMETRY

We consider now the case of steady-state flow in spher-
ical geometry. We assume that a ball of neutrals has a
density

ny(r)=Noe™"/%, (41)
where r is the radial position in spherical coordinates. The
center of the ball is at x=0, the anode surface. We are
therefore actually interested in the ion flow from a half-ball
on the anode surface, but for simplicity we consider the
spherically symmetric case. The electron density satisfies
Eq. (13) with y=5/3,

n,=ng(1+3W)>*>2, (42)
In spherical symmetry we obtain the equation

Ly 2\ g dp PR e

_(1-;-3‘}') =f V07 , (43)

where p=r/A.

Energy conservation for Eq. (43) is shown similarly to
that for the steady-state slab in Sec. IV. The ion energy flux
at p is

o , y—1 1/(y=1)
re= L dp’ p'%e=" 2(“’7 ‘I-’(p’))

X[¥(p")—=¥(p)]. (44)
The electron energy flux at p is
0 , —1 1/(y—1)
rf=f dp'p'ze“’z(1+—7 ‘I'(p'))
0 Y
x—L- (1+1_—1 ‘l’(p)) (45)
y—1 Y '
The energy generation rate within radius p is
P , —1 1/(y-1)
SE= f dp' p'le=? 2(1+‘y—\l/(p’))
0 Y
X (1+”—_—1\IJ( ')) (46)
y—1 y )

The expression (FE4+TE) —SE is identically zero, as is
necessary for energy conservation.

In Fig. 6(a) we plot ¥ vs p, from the numerical solu-
tion of Eq. (43), for several values of a. Figures 6(b) and
6(c) show the electron and ion energies. Steady-state ion
heating (and electron cooling) is largest for a=1.76. In
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FIG. 6. (a) ¥ vs p, (b) the normalized temperature 7./ T, vs p, and (c)
the normalized ion energy E/ T, vs p, for various values of c.

this case, about two-thirds of the electron energy is con-
verted to ion energy. The ion heating rapidly decreases
with decreasing a. For a> 1.76, the solution for ¥ be-
comes singular, indicating the absence of a steady-state
flow.

We now consider time-dependent expansion in spher-
ical geometry. This corresponds to a > 1.76 for the neutral
ball described by Eq. (41). Let us examine the idealized
problem of the expansion of a plasma ball. As with the
steady-state expansion, the presence of the anode does not
allow spherical symmetry in our case. However, for sim-
plicity we treat a half-ball as a full ball. The reduction of
temperature is T /T;=(L/L) " P=(Ly/L)~% If
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the electron temperature decreases to one-fourth and the
rest of the energy becomes ion directed energy we obtain
final ion energy three times the eleciron energy. It is there-
fore sufficient that the plasma dimension doubles itself for
such an energy transfer.

We demonstrate the above estimate again with a self-
similar solution. As in Sec. IV, we take s(r) to be zero for
the time-dependent expansion. The governing equations
become

g a Ay 8 1 47
(E*_v E)U_ —(’VTI)E"D — Vb ( )
and
dp 14
w25 (Ppv) =0, (48)

where v is the radial component of the velocity. The self-
similar solution to this system is almost identical to that in
slab geometry (Sec. IV), and is given in Ref. 21 for v=0.
We obtain

7 1/(y—1)
P("J):Pc(t)(l—m) , (49)
where
pl)R(1)}=1 (50)
and
p.(0)=R(0)=1. (51)

Here, we normalize r by Ry, p by p.g, v by v,=(To/M)"?,
t by Ry/v,, and v by v/Ry. The velocity is

v(r,t) =R()r/R(1t) (52)
for r<R(t). The equation of motion for the radius R is

.. 2y .

Rz(y—l)R 7=3—VR. (53)

At later times R is small and

27,( 3,,,_ 1 1/(3y—1} 20 \ /4
RE(T_I)"*Z) =(TI) t— 0. (54)

The velocity R approaches zero asymptotically. At earlier
times we neglect collisions and the solution of (53) with-
out the second term on the right-hand side is

R=(1452)'2, -0, (55)

Figure 7 shows R as a function of ¢ for various values of v
for y=5/3. For v=1, which corresponds to a neutral den-
sity of 10'® cm™3, we plot also the approximate relations
(54) and (55).

Unless the neutral density is very large (10'® cm™3) we
can neglect the collision term in (53), When collisions are
neglected, the electron thermal energy
Er=3[8dranPP,(rt) and the ion directed energy
E= [&dr anPlpu(rt)? are

6m ! 2 215/2
Er(ty=5—3 f dx x°(1—x°) (56)
R()" Jo
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FIG. 7. Rvs 1, for v=0.1, 1, 10. The dotted curves show the approximate
resulis [(54) and (55)] for v=1,

and

1 1
Ek(t)=677(1—-k§) JO dx 2(1—x2)"2, (57)

where we used the relation (R)*=5(1—1/R?). We obtain
E/Er=R*—1. (58)

For ion energy two to three times the electron energy R has
to be 1.7-2. Assume that at this value the average density
in the ball is equal to the density of the plasma back-
ground. The average density of the ball is then initially five
to eight times the background density.

The time-dependent spherical expansion has the fol-
lowing features: a plasma generated as a ball of density few
times 10'® cm ™3, one order of magnitude larger than that
of the plasma density, and composed initially of cold ions
and electrons of temperature ~ 30 eV expands. By the time
the density of the ball becomes equal to the density of the
background plasma the electron temperature is about 10
eV and the singly charged ion kinetic energy is about 20
eV. The initial radius is less than 30 um and the final radius
of the ball is smaller than 50 pm.

The lower bound on the ball radius is not clear. If the
initial ball radius is much smaller than the electron Larmor
radius and the collision mean-free path the expansion
would be collisionless. There is no clear way to show it is
not so. However, the ball radius seems to be related to
nonuniformities in the anode and they should determine
the initial ball dimensions.

A consequence of the localized plasma generation is
the presence of strong electric fields near the anode, of
intensity 10 kV/cm. The assumption that plasma is gener-
ated and expands in a few nsec results in fluctuations of the
electric field with frequency of 10° sec™!. Such strong os-
cillations were in fact measured in all the plasma.?!

VI. CONCLUSIONS

We ezamined several pictures of energetic ion genera-
tion in the anode plasma. We assumed that a dense plasma
is generated in a small region near the anode and during its
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expansion into the background plasma electrons transfer
their thermal energy into ion directed kinetic energy. Both
time-dependent and steady-state plasma expansions were
examined for a slab and spherical geometries. While the
amount of energy transferred from the electrons to ions is
not very sensitive to the geometry, a plasma generation in
“half-balls” could explain the isotropy of the ion energies,
while a slab plasma should result in anisotropic ion veloc-
ity distribution. Thus, our model could explain the three
main observations related to the ion velocities: the magni-
tude of the ion flow velocity normal to the anode surface,
the isotropy of ion velocity distribution parallel to the an-
ode surface, and the ion acceleration very close to the an-
ode surface. Our model assumes higher electron tempera-
ture and density near the anode. We are currently using
our spectroscopic methods to measure with high spatial
resolution the plasma parameters near the anode.

The source of the ion energy in the picture we suggest
is the electron thermal energy. Possible sources for a high
electron thermal energy near the anode should be investi-
gated further.
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